253,067 research outputs found

    Hybrid power semiconductor

    Get PDF
    The voltage rating of a bipolar transistor may be greatly extended while at the same time reducing its switching time by operating it in conjunction with FETs in a hybrid circuit. One FET is used to drive the bipolar transistor while the other FET is connected in series with the transistor and an inductive load. Both FETs are turned on or off by a single drive signal of load power, the second FET upon ceasing conductions, rendering one power electrode of the bipolar transistor open. Means are provided to dissipate currents which flow after the bipolar transistor is rendered nonconducting

    Symmetries and Lie algebra of the differential-difference Kadomstev-Petviashvili hierarchy

    Full text link
    By introducing suitable non-isospectral flows we construct two sets of symmetries for the isospectral differential-difference Kadomstev-Petviashvili hierarchy. The symmetries form an infinite dimensional Lie algebra.Comment: 9 page

    Rare-earth ions doped transparent oxyfluoride glass-ceramics

    No full text
    In recent years, rare-earth ions doped transparent oxyfluoride glass-ceramics have attracted great attentions for their low phonon energy environments of fluoride nanocrystals and high chemical and mechanical stabilities of oxide glassy matrix. In this chapter, firstly, the crystallization behaviors of the transparent glass ceramics containing CaF2 nanocrystals are presented to demonstrate the controllable microstructure evolution of nano-composites. Secondly, the optical properties of the newly developed transparent glass-ceramics containing β-YF3 nanocrystals are systematically reviewed. The rare-earth ions are inclined to partition into the YF3 nanocrystals after crystallization. Through variation of the rare-earth doping and control of the microstructures, the glass-ceramics could exhibit high-stimulated emission cross-section, broadband near infrared emission, high efficient ultraviolet upconversion emission and bright white light emission, indicating their potential multifunctional applications in solid state laser, upconversion, optical amplifier, three-dimensional display, and so on

    Pseudo-Hermitian Hamiltonians Generating Waveguide Mode Evolution

    Full text link
    We study the properties of Hamiltonians defined as the generators of transfer matrices in quasi- one-dimensional waveguides. For single- or multi-mode waveguides obeying flux conservation and time-reversal invariance, the Hamiltonians defined in this way are non-Hermitian, but satisfy symmetry properties that have previously been identified in the literature as "pseudo Hermiticity" and "anti-PT symmetry". We show how simple one-channel and two-channel models exhibit transitions between real, imaginary, and complex eigenvalue pairs.Comment: 7 pages, 2 figure

    Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions

    Full text link
    Strong short ranged positional correlations involving counterions can induce a net attractive force between negatively charged strands of DNA, and lead to the formation of ion pairs in dilute ionic solutions. But the long range of the Coulomb interactions impedes the development of a simple local picture. We address this general problem by mapping the properties of a nonuniform system with Coulomb interactions onto those of a simpler system with short ranged intermolecular interactions in an effective external field that accounts for the averaged effects of appropriately chosen long ranged and slowly varying components of the Coulomb interactions. The remaining short ranged components combine with the other molecular core interactions and strongly affect pair correlations in dense or strongly coupled systems. We show that pair correlation functions in the effective short ranged system closely resemble those in the uniform primitive model of ionic solutions, and illustrate the formation of ion pairs and clusters at low densities. The theory accurately describes detailed features of the effective attraction between two equally charged walls at strong coupling and intermediate separations of the walls. New analytical results for the minimal coupling strength needed to get any attraction and for the separation where the attractive force is a maximum are presented.Comment: 8 pages, 5 figures. To be published in PNA

    The Angular Momentum Distribution within Halos in Different Dark Matter Models

    Full text link
    We study the angular momentum profile of dark matter halos for a statistical sample drawn from a set of high-resolution cosmological simulations of 2563256^3 particles. Two typical Cold Dark Matter (CDM) models have been analyzed, and the halos are selected to have at least 3×1043\times 10^4 particles in order to reliably measure the angular momentum profile. In contrast with the recent claims of Bullock et al., we find that the degree of misalignment of angular momentum within a halo is very high. About 50 percent of halos have more than 10 percent of halo mass in the mass of negative angular momentum jj. After the mass of negative jj is excluded, the cumulative mass function M(<j)M(<j) follows approximately the universal function proposed by Bullock et al., though we still find a significant fraction of halos (∼50\sim 50%) which exhibit systematic deviations from the universal function. Our results, however, are broadly in good agreement with a recent work of van den Bosch et al.. We also study the angular momentum profile of halos in a Warm Dark Matter (WDM) model and a Self-Interacting Dark Matter (SIDM) model. We find that the angular momentum profile of halos in the WDM is statistically indistinguishable from that in the CDM model, but the angular momentum of halos in the SIDM is reduced by the self-interaction of dark matter.Comment: 23 pages, 10 figures, 2 tables. Revised version, added a new table, accepted for publication in MNRA
    • …
    corecore